Cambridge Environmental Research Consultants Ltd

Source Apportionment for Hillingdon, Hounslow and Spelthorne

Final Report

Prepared for London Borough of Hillingdon

21st March 2003

Report Information

•		
CERC J	ob Number:	FM502
Job Title	:	Source Apportionment for Hillingdon, Hounslow and Spelthorne
Prepare	d for:	LB Hillingdon
Report S	Status:	Final
Report F	Reference:	FM502/R4S/03
Issue Da	ate:	21/03/2003
Author(s):	Matthew Williams, Sofia Girnary
Reviewe	er(s):	Sarah Wilkinson
Issue	Date	Comments
1	14/10/02	Draft report for source apportionment
2	15/11/02	Revised draft report for source
		apportionment
3 4	17/12/02 21/03/03	Final SA report Changing to NOx as NO2
Main File	e(s):	FM502_R4S_21Mar03.doc
Figures	and Tables	Model Run Reference(s)
Table 3.1		no2tothi, pmtothi
	.3a and 4.3b	gsards05, gsapts04, sa_oth05, gsaapt05, japvol05
Figures 4.4a and 4.4b		sa_rds04, gsapts04, sa_oth04, gsaap04b, japol05
Figures 5.3a and 5.3b		gsacar05, gsabus05, gsahgv05, gsalgv05
Figures 5.4a and 5.4b		gsacar04, gsabus04, gsahgv04, gsalgv04
Figures 6.4a and 6.4b		sa_ha05, sa_tf105, sa_brd05
Figures 6.5a and 6.5b Figures 7.4a and 7.4b		sa_ha04, sa_tf104, sa_brd04
	.4a and 7.4b .5a and 7.5b	hr_rds05, nhr_rd05, gothrd05 hr_rds04, nhr_rd04, gothrd04
•	.3a to 8.4b	hr rv05, hr lin05, hr hol05, hr hea05,
-		hr_ets05, hr_cpk05, hr_apu05, hr_all05
Figues 9.	1a to 9.2b	apv05_g.upl, apv05_m.upl, apv05_t.upl

Contents

1.	SUMMARY	1
2.	INTRODUCTION	4
3.	SOURCE APPORTIONMENT	5
3. 3.		
4.	APPORTIONMENT BY SOURCE GROUP	9
4. 4. 5. 5.	2 CONCENTRATIONS	11 14
6.	BREAKDOWN OF TRAFFIC EMISSIONS BY ROAD TYPE	
6. 6.		
7.	BREAKDOWN INTO HEATHROW & NON-HEATHROW TRAFFIC	
7. 7.		
8.	BREAKDOWN OF HEATHROW AIRPORT EMISSIONS	
8. 8.		
9.	BREAKDOWN OF HEATHROW AIRBORNE AIRCRAFT SOURCES BY HEIGHT	
9. 9.		
10.	DISCUSSION	41

1. Summary

A source apportionment study for emissions to air of NO_x and PM_{10} has been carried out using EMIT and ADMS-Urban. Emissions of NO_x in 2005 and PM_{10} in 2004 have been considered in the London Boroughs of Hillingdon and Hounslow and the Borough of Spelthorne.

An air quality modelling study was previously carried out for the area and is described in the report *Air quality modelling for West London: Hillingdon, Hounslow, Spelthorne and Slough,* dated 27th August 2002. This earlier work, and the source apportionment study described here, form part of the Stage 4 Review and Assessment of Air Quality.

Emissions data were taken from four different sources: the emissions inventory for Heathrow, 1998; the London Atmospheric Emissions Inventory (LAEI), supplied by the Greater London Authority (GLA), February 2002; the Surrey Traffic Model; and the February 2002 emissions inventory for Slough. Meteorological data from Heathrow for the year 1999 were used in the modelling. Background concentration data were obtained from rural monitoring sites and adjusted to be appropriate for the years 2004 and 2005.

The source apportionment exercise quantifies the relative contribution of each source group both (1) to the total emissions, and (2) to the resulting annual average ground level concentration at eleven receptor locations within Hillingdon. The emissions and annual average concentrations have been apportioned in the following ways:

- By major source group;
- Breakdown of traffic sources by vehicle type;
- Breakdown of traffic sources by road type, i.e. which organisation has responsibility;
- Breakdown of traffic sources into Heathrow and non-Heathrow traffic;
- Breakdown of Heathrow Airport sources; and
- Breakdown of Heathrow airborne aircraft sources by height.

The results of each of these are described in the following sections.

Breakdown into major source groups

The maximum contribution to the total emissions of NO_x from within Hillingdon is from Heathrow Airport, which contributes 58%. The maximum contribution to the total emissions of PM_{10} is also from Heathrow Airport, which contributes 40%.

At most of the receptor points, the major contribution to annual average NO_x concentrations is from major roads. However, Heathrow Airport is the major contributor at Mendip Close and Bomber Close. For PM_{10} , the background concentration dominates the predicted concentrations.

Breakdown of traffic by vehicle type

The maximum contribution to the total emissions of NO_x from traffic from within Hillingdon is from cars, which contribute 38%. The maximum contribution to the total emissions of PM_{10} from traffic is from LGVs, which contribute 32%.

The contributions to the total annual average concentrations of NO_x and PM_{10} from traffic sources vary greatly depending on the receptor location considered, with the greatest contribution for both pollutants at the AURN site.

The percentage contribution of each traffic type to the annual average NO_x concentration is approximately the same at each of the receptor points with the major contributions being from cars and HGVs. The situation for PM_{10} is similar with cars, HGVs and LGVs all making major contributions to the concentrations.

Breakdown of traffic by road type

The NO_x emissions from major roads within Hillingdon are fairly equally shared out amongst roads for which the Highways Agency and the local authority have responsibility, with the TfL roads contributing slightly less. There is a similar situation for PM_{10} .

The contribution to the annual average concentrations of NO_x and PM_{10} from each road group varies depending on the receptor location considered, as does the percentage contribution from each group.

Breakdown into Heathrow and non-Heathrow traffic

Emissions from Heathrow traffic make up 16% of the total emissions of NO_x from major roads within Hillingdon. Non-Heathrow traffic contributes 60% with the remainder undefined. Heathrow traffic contributes 15% of the total emissions of PM_{10} from major roads within Hillingdon. Non-Heathrow traffic contributes 58% with the remainder undefined

The contribution to the annual average concentrations of NO_x and PM_{10} from each road group varies depending on the receptor location considered, as does the percentage contribution from each group. For both pollutants the percentage contribution due to Heathrow traffic is greatest at Bomber Close where it reaches 26% of the total concentration resulting from traffic emissions.

Breakdown of Heathrow Airport sources

The maximum contribution to the emissions of NO_x from Heathrow Airport is from airborne aircraft, which contribute 66%. The maximum contribution to the emissions of PM_{10} is from taxiing and aircraft holding, which contribute 44%.

The contribution to the annual average concentrations of NO_x and PM_{10} from each airport source type varies depending on the receptor location considered.

At most of the receptor points, the major contribution to annual average NO_x concentrations resulting from the airport emissions is from airborne aircraft. However, road vehicles are the major contributor at the AURN site. For PM_{10} , the percentage contribution varies depending on the receptor location considered with the major contributors being road vehicles and taxiing and aircraft holding.

Breakdown of Heathrow airborne aircraft sources by height

To determine the relative impacts of the aircraft at different heights, the volume sources used in the modelling have been divided into three sets according to the heights they represent (0 to 50m; 50m to 450m; and 450m to 1000m) and have been modelled separately. The maximum emissions of NO_x and PM_{10} are emitted from aircraft above a height of 450m, however, the impact of the emissions from different heights on ground level concentrations will vary depending on the distance from the ground and the area over which the pollutants are emitted.

The contribution of all the airborne aircraft to the annual average concentrations of NO_x and PM_{10} varies greatly depending on the receptor location.

In all cases the greatest contribution to the ground level concentrations comes from the aircraft closest to the ground, up to a height of 50m, which contribute between 82% and 97% of the total NO_x and PM_{10} concentration resulting from airborne aircraft. The impact of the aircraft above a height of 450m is very low, contributing at most 3% of the total NO_x and PM_{10} concentration resulting from airborne aircraft emissions. The greatest percentage contribution from aircraft above a height of 450m occurs at sites away from the airport, where the overall contribution to the ground level concentrations from airborne aircraft is smallest.

2. Introduction

Cambridge Environmental Research Consultants Ltd (CERC) has been commissioned by the London Boroughs of Hillingdon and Hounslow and the Borough of Spelthorne to carry out a source apportionment study for the area covered by the three boroughs using EMIT and ADMS-Urban, for PM_{10} and NO_x .

An air quality modelling study was previously carried out for the area and is described in the report *Air quality modelling for West London: Hillingdon, Hounslow, Spelthorne and Slough,* dated 27th August 2002. This earlier work, and the source apportionment study described here, form part of the Stage 4 Review and Assessment of Air Quality.

The source apportionment exercise quantifies the relative contribution of each source group both (1) to the total emissions, and (2) to the resulting annual average ground level concentration at eleven receptor locations within Hillingdon. The emissions and annual average concentrations have been apportioned in the following ways:

- By major source group;
- Breakdown of traffic sources by vehicle type;
- Breakdown of traffic sources by road type, i.e. which organisation has responsibility;
- Breakdown of traffic sources into Heathrow and non-Heathrow traffic;
- Breakdown of Heathrow Airport sources; and
- Breakdown of Heathrow airborne aircraft sources by height.

3. Source apportionment

The pollutant concentrations occurring at any location are the result of emissions from a wide range of sources of different types and at different locations. The modelling carried out for the London Boroughs of Hillingdon and Hounslow and the Borough of Spelthorne considered all the emission sources within the London area and took into account the effect of emissions from outside the area by using rural background concentration data.

The source apportionment exercise reported here quantifies the relative contribution of each source group both to the total emissions, and to the resulting annual average ground level concentration at eleven receptor locations within the borough. The emissions and concentrations have been apportioned in the following ways:

- By major source group;
- Breakdown of traffic sources by vehicle type;
- Breakdown of traffic sources by road type, i.e. which organisation has responsibility;
- Breakdown of traffic sources into Heathrow and non-Heathrow traffic;
- Breakdown of Heathrow Airport sources; and
- Breakdown of Heathrow airborne aircraft sources by height.

The source apportionment work has been carried out for the predicted emissions and concentrations in 2004 for PM_{10} and 2005 for NO_x . These are the years by which the Air Quality Strategy Objective values are required to be achieved and, to aid the decision making process involved in the Stage 4 Review and Assessment of Air Quality, it is most useful to have estimates of source apportionment for these years.

The Air Quality Strategy defines objective values for NO₂, while emissions from the modelled sources are given in terms of NO_x. A proportion of the emitted NO_x is in the form of NO₂ and a further proportion will be converted to NO₂ during its time in the atmosphere. The amount of NO₂ created will depend on many factors including emissions from other sources in the area. Therefore the total NO₂ concentration cannot be broken down simply into concentrations resulting from different sources, as for PM₁₀, as it will depend on emissions from the other sources in the area. The source apportionment study has therefore been carried out using NO_x concentrations, assuming that all NO_x is NO₂. These give an indication of which sources are contributing most to the concentrations of NO₂ although the results should be treated with caution because, for example, a 10% reduction in NO_x concentrations.

3.1 Emissions

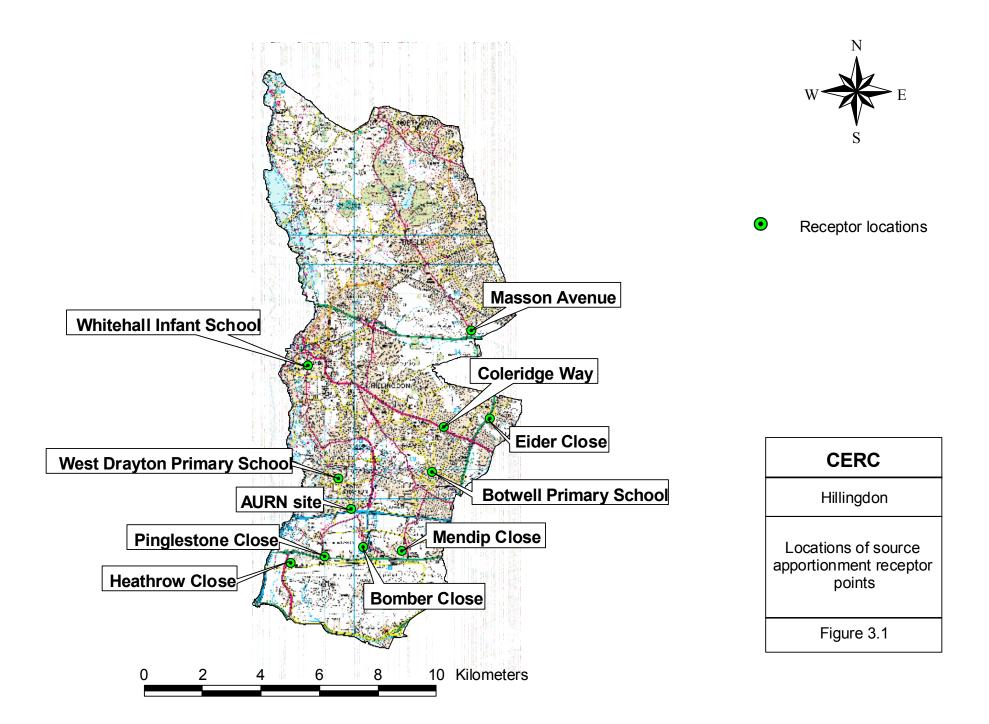
Emissions data were taken from four different sources: the emissions inventory for Heathrow, 1998; the London Atmospheric Emissions Inventory (LAEI), supplied by the Greater London Authority (GLA), February 2002; the Surrey Traffic Model; and the February 2002 emissions inventory for Slough. Traffic emissions were calculated from the traffic flows given in the inventories using the latest set of emission factors, released in February 2002.

Emissions for sources other than road and industrial sources are given in the form of a set of 1km square grid cells covering the whole of London.

For each source apportionment exercise the emissions were broken down into source groups. For each source group total emissions from within Hillingdon; from within the study area comprising Hillingdon, Hounslow and Spelthorne (referred to as Hi/Ho/Sp); and from the entire area covered by the emission inventories have been presented.

As well as dividing the emissions into different source groups, the ground level concentrations resulting from each source group have been calculated at a set of receptor points within the borough. Details of the receptor locations within Hillingdon for which the source apportionment exercise were carried out are given in Table 3.1 together with the total annual average NO₂ and PM_{10} concentrations predicted at each of the locations. The locations are shown in Figure 3.1.

Table 5.1. Source apportionment receptor point tocations within Hutington							
ID	Description	Location	Annual average NO ₂	Annual average PM ₁₀			
			concentration (µg/m ³)	concentration (µg/m³)			
1	Masson Avenue	511019, 184714	39.3	23.7			
2	Eider Close	511642, 181709	40.4	23.7			
3	Coleridge Way	510073, 181410	35.4	23.2			
4	Botwell Primary	509681, 179870	40.5	23.7			
	School						
5	Mendip Close	508640, 177199	47.0	23.8			
6	Bomber Close	507307, 177301	45.0	23.8			
7	Pinglestone Close	505996, 177006	45.6	23.7			
8	Heathrow Close	504842, 176789	42.1	23.8			
9	West Drayton	506473, 179674	37.7	23.4			
	Primary School						
10	AURN site	506900, 178620	51.9	25.4			
11	Whitehall Infant	505432, 183532	36.8	23.4			
	School						


 Table 3.1: Source apportionment receptor point locations within Hillingdon

The annual average NO₂ concentrations are predicted to exceed the AQS objective value of $40\mu g/m^3$ at seven of the eleven receptor points considered. The annual average PM₁₀ concentrations are not predicted to exceed the AQS objective value of $40\mu g/m^3$ at any of the receptor locations.

 NO_x emissions from outside London and PM_{10} emissions both from outside London and from sources not represented in the emissions inventory (the "coarse component") are represented in the modelling by background concentrations. The background values used are the same as those used in the modelling study for the area and are described fully in the report *Air quality modelling for West London: Hillingdon, Hounslow, Spelthorne and Slough.*

Note that the concentrations due to each source group have been predicted from the emissions over the entire area covered by the emissions inventories.

4. Apportionment by source group

The emissions from all the sources in the borough have been divided according to their source type. The total emissions from each source group from within the borough, from within the study area and from the entire area covered by the emissions inventories have been calculated. The contributions to the ground level concentrations from each source group, due to emissions from the entire inventory area, have been calculated at each of the receptor locations. The source types used are:

- Major road sources;
- Heathrow Airport sources, including airborne aircraft, taxiing and aircraft holding, heating, and on-site traffic, car parks and taxi ranks;
- Industrial, including Part As, Part Bs and boilers rated greater than 2MW; and
- Other sources, including other transport sources and commercial and domestic fuel use.

When predicting concentrations from each of these source groups, the major roads and major industrial sources were modelled explicitly and the remaining industrial sources and other source groups were modelled as 1km² gridded emissions.

4.1 Emissions

Tables 4.1 and 4.2 show the emissions of NO_x and PM_{10} , respectively, from within Hillingdon, from within the study area comprising Hillingdon, Hounslow and Spelthorne (referred to as HI/Ho/Sp), and from the entire area covered by the emissions inventories (referred to as EI area), broken down into the major source groups.

	Major roads	Airport	Industrial	Other	Total
Hillingdon	1541	3750	243	906	6440
Hi/Ho/Sp	3843	5004	293	1680	10820
EI area	25759	9089	25609	36130	96587

Table 4.1: NO_x emissions broken down by source type (tonnes/year)

Table 4.2: PM₁₀ emissions broken down by source type (tonnes/year)

	Major roads	Airport	Industrial	Other	Total
Hillingdon	60	72	27	22	181
Hi/Ho/Sp	149	81	60	37	327
EI area	1130	96	1061	1056	3344

Figures 4.1 and 4.2 show the emissions of NO_x and PM₁₀, respectively, from within Hillingdon.

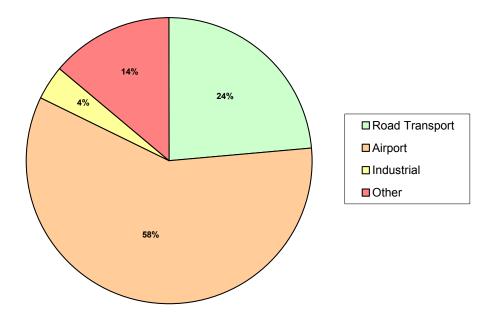


Figure 4.1: NO_x emissions from within Hillingdon

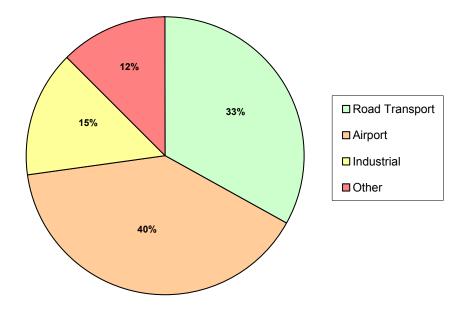


Figure 4.2: PM₁₀ emissions from within Hillingdon

The maximum contribution to the total emissions of NO_x within Hillingdon is from Heathrow Airport, which contributes 58%. Road traffic contributes 24% to the total emissions of NO_x within Hillingdon.

The maximum contribution to the total emissions of PM_{10} is also from the airport, which contributes 40%. Road traffic contributes 33% to the total emissions of PM_{10} within the borough.

4.2 Concentrations

The annual average NO_x concentrations resulting from emissions from each source type have been calculated at each of the receptor points. Figure 4.3a shows the contributions of each of the source groups to these predicted concentrations. Figure 4.3b shows these values as percentages of the totals. Note that the concentrations presented are those resulting from emissions over the whole of the area covered by the emissions inventories, not just from within Hillingdon. Figures 4.4a and 4.4b show the equivalent information for PM_{10} ; note the change of scale in Figure 4.4a.

At most of the receptor points, the major contribution to annual average NO_x concentrations is from major roads. However, Heathrow Airport is the major contributor at Mendip Close and Bomber Close. For PM_{10} , the background concentration dominates the predicted concentrations.

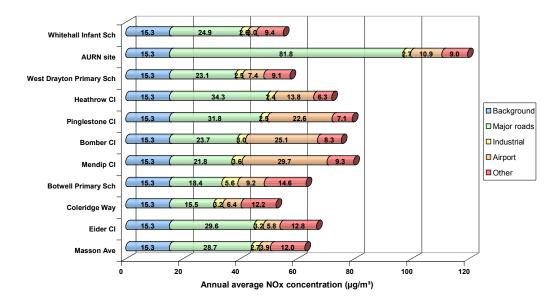


Figure 4.3a: Contribution of major source groups to annual average NO_x concentrations

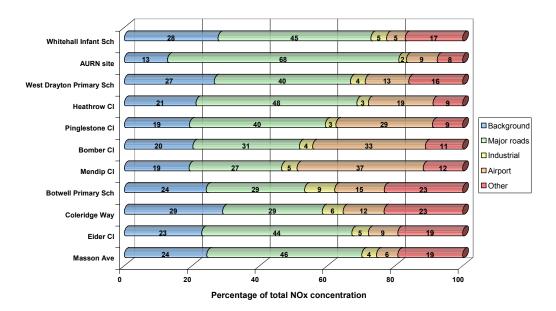


Figure 4.3b: Percentage contribution of major source groups to annual average NO_x concentrations

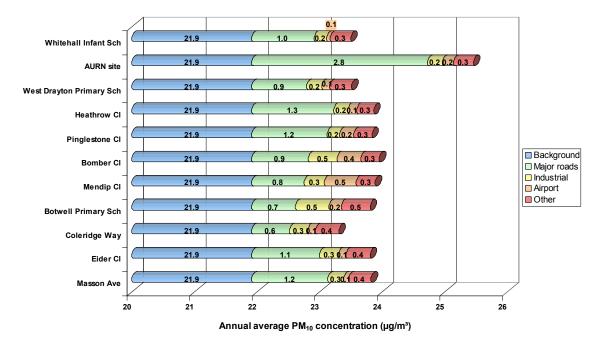


Figure 4.4a: Contribution of major source groups to annual average PM₁₀ concentrations

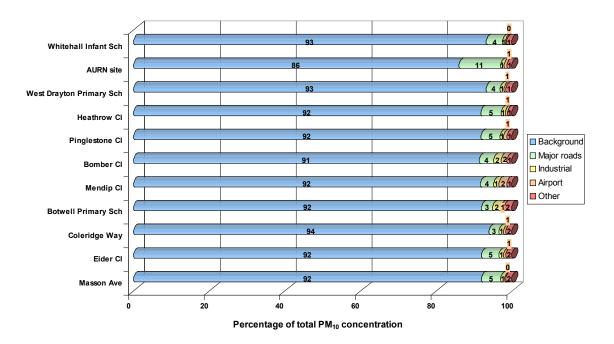


Figure 4.4b: Percentage contribution of major source groups to annual average PM_{10} concentrations

5. Breakdown of traffic emissions by vehicle type

The emissions from the major roads have been broken down into emissions from the different types of vehicles. The total emissions from each vehicle type from within the borough, the study area and the entire inventory area have been calculated. The contributions to the ground level concentrations from each vehicle type, due to emissions from the entire inventory area, have been calculated at each of the receptor locations. The vehicle categories used are:

- Cars & motorcycles;
- Light Goods Vehicles (LGVs); •
- Heavy Goods Vehicles (HGVs); and
- Buses & coaches.

5.1 Emissions

Tables 5.1 and 5.2 show the breakdown of traffic emissions of NO_x and PM₁₀, respectively, from within Hillingdon, from within the study area comprising Hillingdon, Hounslow and Spelthorne, and from within the whole emissions inventory area. Figures 5.1 and 5.2 show pie charts of the emissions from within the borough.

	Cars		LC	GV	HGV		Bus	
	T/yr	%	T/yr	%	T/yr	%	T/yr	%
Hillingdon	600	38	152	10	563	37	227	15
Hi/Ho/Sp	1439	37	373	10	1419	37	612	16
EI area	9154	36	2780	11	10495	41	3332	13

Table 5.1: Emissions of NO_x from different vehicle types

Table 5.2: Emis	sions of PM ₁₀ from	m aijjerent venici	e types
	Cars	LGV	HGV

	Ca	Cars LGV		HGV		Bus		
	T/yr	%	T/yr	%	T/yr	%	T/yr	%
Hillingdon	17	29	19	32	17	28	7	11
Hi/Ho/Sp	42	28	45	30	42	28	19	13
EI area	383	34	327	29	350	31	70	6

The maximum contribution to the total emissions of NO_x from traffic within Hillingdon is from cars, which contribute 38%. The maximum contribution to the total emissions of PM_{10} from traffic is from LGVs, which contribute 32%.

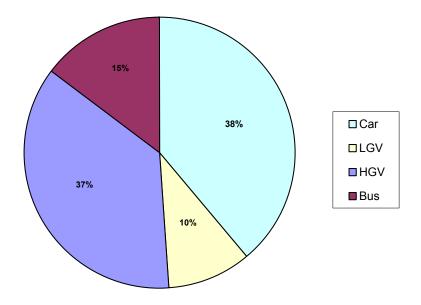


Figure 5.1: NO_x emissions from different vehicle types within Hillingdon

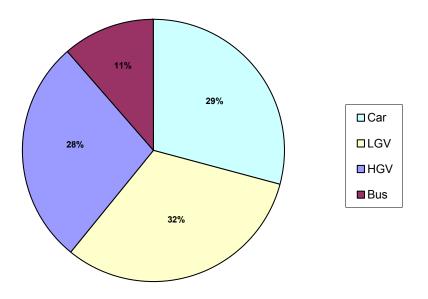


Figure 5.2: PM₁₀ emissions from different vehicle types within Hillingdon

The annual average NO_x concentrations resulting from each vehicle type have been calculated at each of the receptor points and these are shown in Figure 5.3a. Figure 5.3b shows the percentage contribution of each source group to the total annual average NO_x concentration resulting from traffic emissions. Note that the concentrations presented are those resulting from emissions over the whole of the area covered by the emissions inventories, not just from within Hillingdon. Figures 5.4a and 5.4b show the equivalent contributions to the annual average PM_{10} concentrations.

The contribution to the annual average concentrations of NO_x and PM_{10} from traffic sources varies depending on the receptor location considered. For both pollutants the greatest contribution occurs at the AURN site.

The percentage contribution of each traffic type to the annual average NO_x concentration is approximately the same at each of the receptor points. Cars and HGVs each contribute between 33% and 44% of the total concentration resulting from traffic emissions at each of the receptor points. The situation is similar for PM_{10} with cars, HGVs and LGVs each contributing between 23% and 36% to the total concentration resulting from traffic emissions.

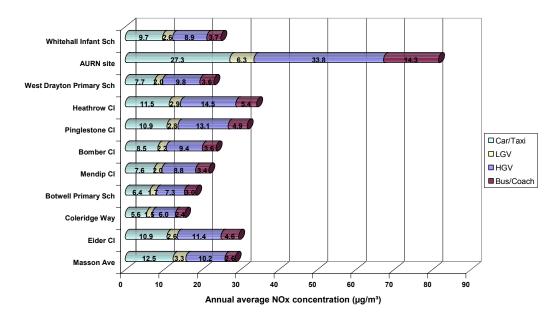


Figure 5.3a: Contribution of different vehicle types to annual average NO_x concentrations

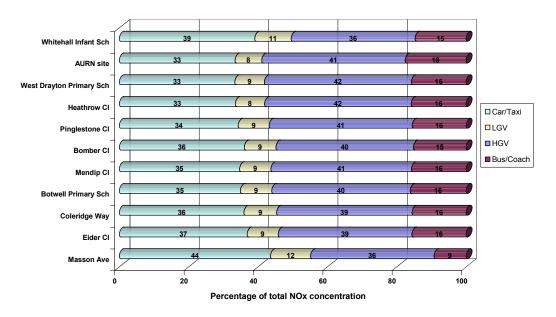


Figure 5.3b: Percentage contribution of different vehicle types to annual average NO_x concentrations resulting from traffic emissions

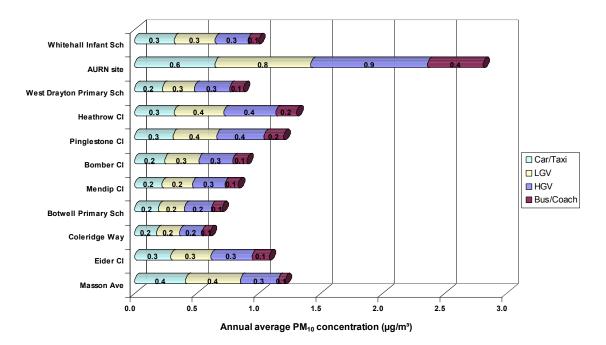


Figure 5.4a: Contribution of different vehicle types to annual average PM₁₀ concentrations

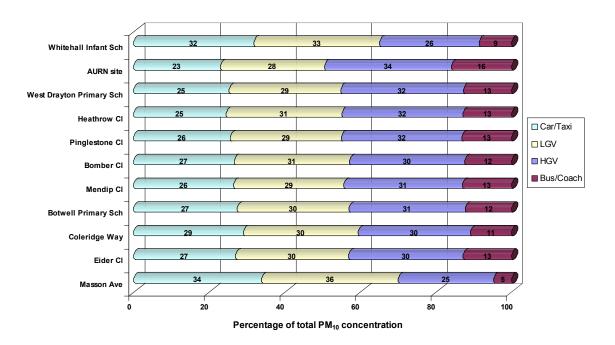


Figure 5.4b: Percentage contribution of different vehicle types to annual average PM_{10} concentrations resulting from traffic emissions

6. Breakdown of traffic emissions by road type

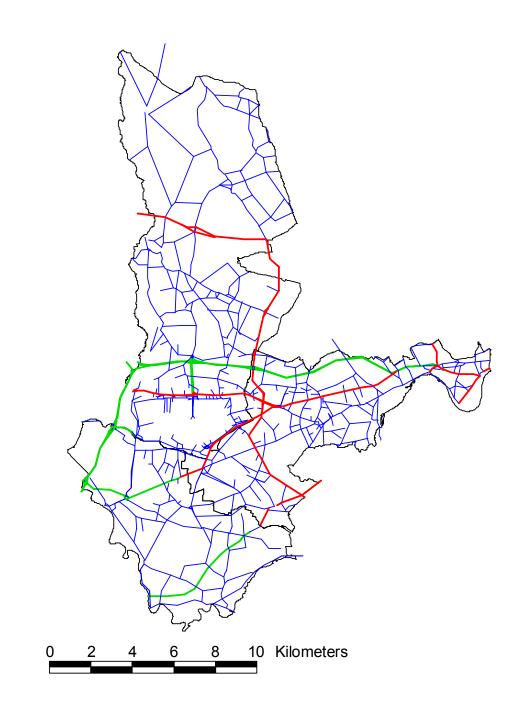
The major roads in the West London area are the responsibility of one of the following organisations:

- the Highways Agency;
- Transport for London (TfL); or
- the Local Authority.

The emissions from each group of roads have been considered separately and the annual average concentrations resulting from each group have been calculated at each of the receptor points considered. The roads included in each group are shown in Figure 6.1. Note that only the emissions from roads within the study area, comprising Hillingdon, Hounslow and Spelthorne, have been included in the modelling for this section.

6.1 Emissions

Tables 6.1 and 6.2 show the emissions of NO_x and PM_{10} , respectively, from each of the three road groups, including each as a percentage of the total emissions from these three groups. Figures 6.2 and 6.3 show pie charts of the breakdown of emissions within the borough.


Table 6.1: NO_x emissions from different road types

	Highways Agency		T	fL	Local Authority	
	T/yr	%	T/yr	%	T/yr	%
Hillingdon	1017	38	691	26	975	36
Hi/Ho/Sp	2270	39	1293	22	2270	39

	Highways Agency		T	ſL	Local Authority	
	T/yr	%	T/yr	%	T/yr	%
Hillingdon	24	35	18	26	27	39
Hi/Ho/Sp	55	36	34	23	63	41

The NO_x emissions from major roads within Hillingdon are fairly equally shared out amongst roads for which the Highways Agency and the local authority have responsibility, with the TfL roads contributing slightly less. There is a similar situation for PM_{10} .

Highways Agency roads ✓ TfL roads // local authority roads

CERC
Hillingdon, Hounslow and Spelthorne
Responsibility for major roads in Hillingdon, Hounslow and Spelthorne
Figure 6.1

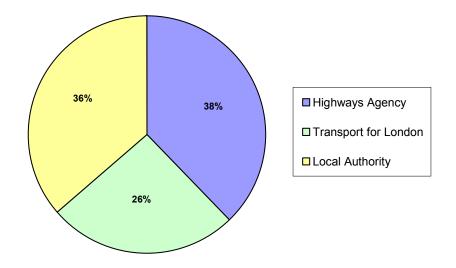


Figure 6.2: NO_x emissions from different road types in Hillingdon

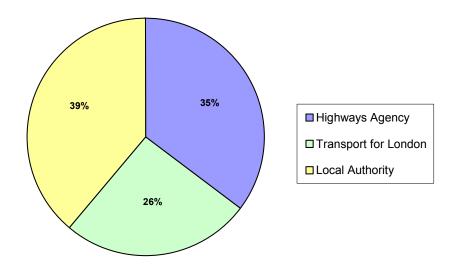


Figure 6.3: PM₁₀ emissions from different road types in Hillingdon

The annual average concentrations of NO_x resulting from emissions from each road group have been predicted at the receptor points in the borough. Note that the concentrations presented are those resulting from emissions within Hillingdon, Hounslow and Spelthorne, not just from within Hillingdon.

Figure 6.4a shows the contribution of each road type to the total and Figure 6.4b shows these contributions as percentages of the total concentration resulting from traffic emissions. Figures 6.5a and 6.5b show the equivalent information for PM_{10} .

The contribution to the annual average concentrations of NO_x and PM_{10} from each road group varies depending on the receptor location considered.

For both NO_x and PM_{10} the greatest percentage contribution from Highways Agency roads is at the AURN site. The greatest percentage contribution from TfL roads is at Eider Close, and the greatest percentage contribution from local authority roads is at Whitehall Infant School.

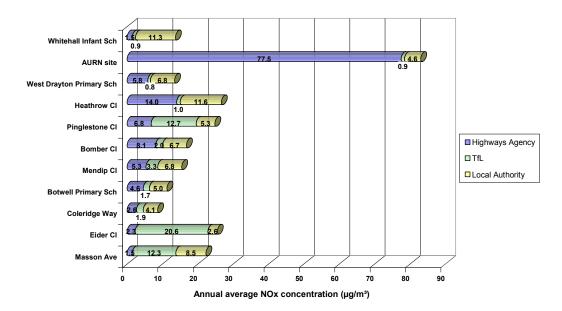


Figure 6.4a: Contribution of different road types to annual average NO_x concentrations

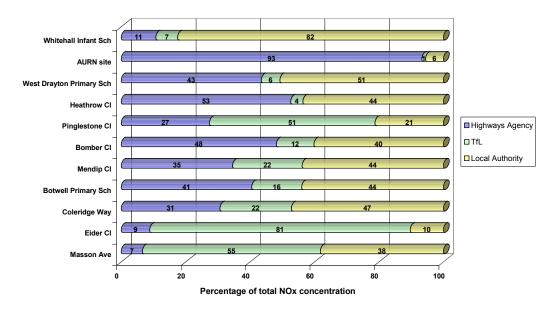


Figure 6.4b: Percentage contribution of different road types to annual average NO_x concentrations from major roads

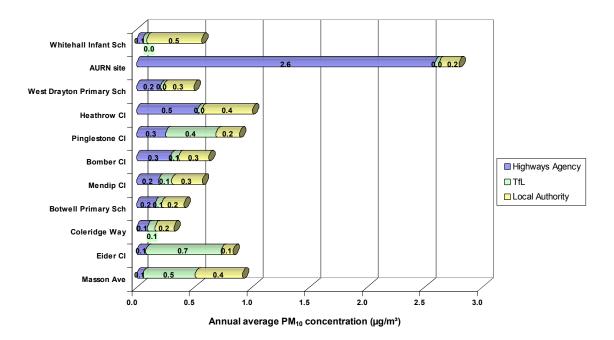


Figure 6.5a: Contribution of different road types to annual average PM₁₀ concentrations

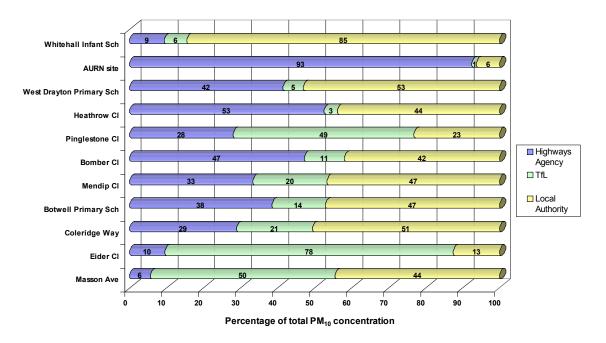


Figure 6.5b: Percentage contribution of different road types to annual average PM_{10} concentrations from major roads

7. Breakdown into Heathrow & non-Heathrow traffic

The Heathrow Emissions Inventory gives a total traffic flow and a flow due to Heathrow traffic for each road covered by the inventory. The emissions for the roads in the inventory have been broken down into the following groups:

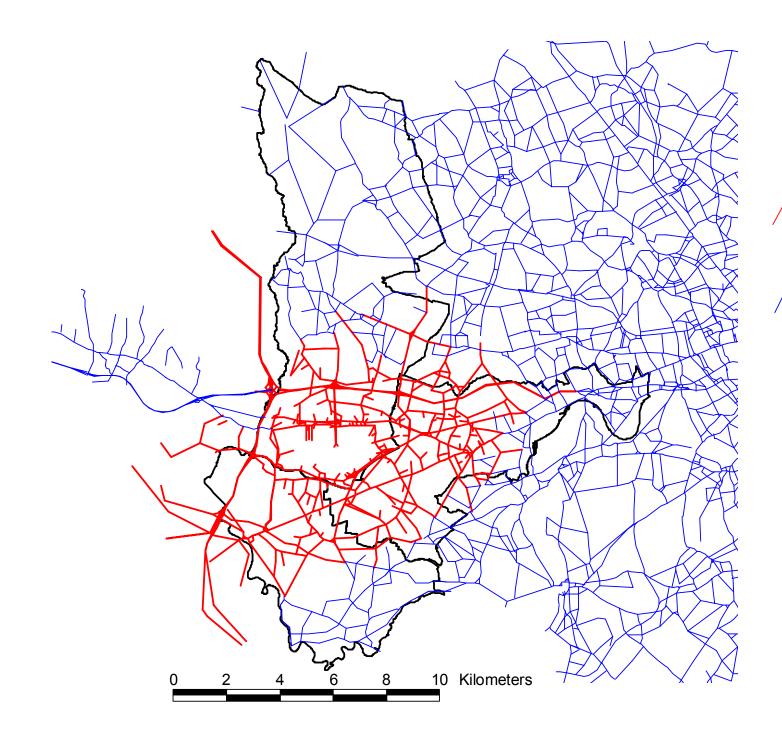
- Heathrow traffic;
- Non-Heathrow traffic; and
- Traffic on roads for which no Heathrow/non-Heathrow split is available (referred to as "other roads")

The emissions from each group have been considered separately and the annual average concentrations resulting from each group have been calculated at each of the receptor points considered. The roads for which the Heathrow/non-Heathrow split is available are shown in Figure 7.1.

7.1 Emissions

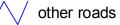
Tables 7.1 and 7.2 show the emissions of NO_x and PM_{10} , respectively, from the different road groups, including each as a percentage of the total major road emissions. Figures 7.2 and 7.3 show pie charts of the breakdown of emissions within the borough.

	Heathrow traffic		Non-Heathrow traffic		Other roads	
	T/yr	%	T/yr	%	T/yr	%
Hillingdon	455	16	1768	60	704	24
Hi/Ho/Sp	631	12	3032	60	1386	27


Table 7.1: NO_x emissions from Heathrow & non-Heathrow traffic

	Heathrow traffic		Non-Heathrow traffic		Other roads	
	T/yr	%	T/yr	%	T/yr	%
Hillingdon	16	15	64	58	30	27
Hi/Ho/Sp	23	12	111	57	60	31

Table 7.2: PM₁₀ emissions from Heathrow & non-Heathrow traffic


Heathrow traffic contributes 16% of the total NO_x traffic emissions within Hillingdon. Non-Heathrow traffic contributes 60%, with the remainder undefined. Heathrow traffic contributes 15% of the total PM_{10} traffic emissions within Hillingdon. Non-Heathrow traffic contributes 58% with the remainder undefined.

 Roads with Heathrow/non-Heathrow traffic data

Hillingdon, Hounslow and Spelthorne

Roads with Heathrow traffic data available

Figure 7.1

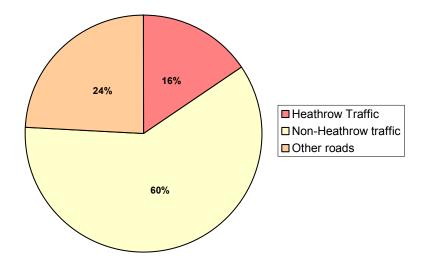


Figure 7.2: NO_x emissions from different road types in Hillingdon

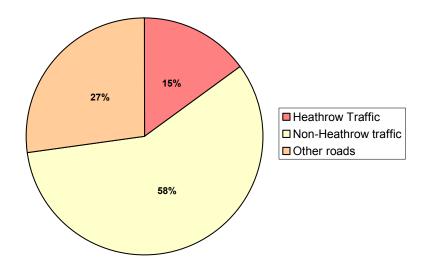


Figure 7.3: PM₁₀ emissions from different road types in Hillingdon

The annual average concentrations of NO_x resulting from emissions from Heathrow and non-Heathrow traffic have been predicted at the receptor points in the borough. Note that the concentrations presented are those resulting from emissions over the whole of the area covered by the emissions inventory, not just from within Hillingdon.

Figure 7.4a shows the contribution of each road type to the total and Figure 7.4b shows these contributions as percentages of the total concentrations resulting from traffic emissions. Figures 7.5a and 7.5b show the equivalent information for PM_{10} .

The contribution of each road group to the annual average NO_x and PM_{10} concentration varies depending on the receptor location considered, as does the percentage contribution of each group. For both pollutants the percentage contribution due to Heathrow traffic is greatest at Bomber Close where it reaches 26% of the total concentration resulting from traffic emissions.

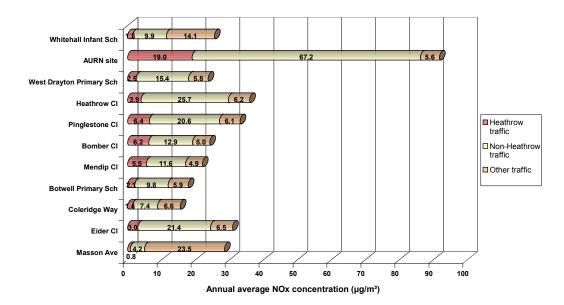


Figure 7.4a: Contribution of Heathrow traffic to annual average NO_x concentrations

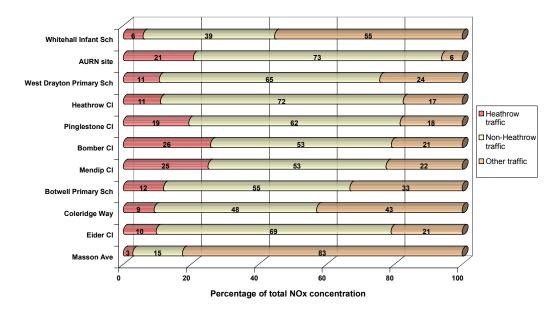


Figure 7.4b: Percentage contribution of Heathrow traffic to annual average NO_x concentrations from major roads

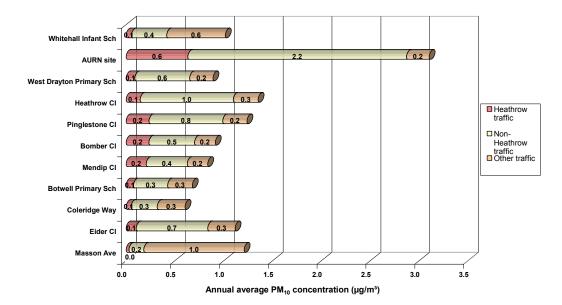


Figure 7.5a: Contribution of Heathrow traffic to annual average PM₁₀ concentrations

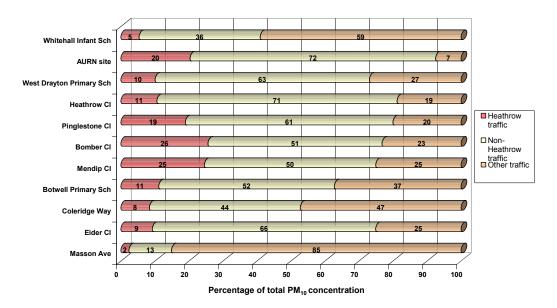


Figure 7.5b: Percentage contribution of Heathrow traffic to annual average PM_{10} concentrations from major roads

8. Breakdown of Heathrow Airport emissions

Emissions from Heathrow Airport have been broken down according to the following source types:

- Emissions from road vehicles, including Heathrow traffic, on-site traffic, car parks and taxi ranks;
- Emissions from airborne aircraft;
- Emissions from aircraft taxiing and holding;
- Emissions from heating; and
- Other emissions.

The emissions from airborne aircraft have been modelled as a set of volume sources, shown in plan and elevation in Figures 8.1 and 8.2 respectively. These volume sources are considered in more detail in Section 9. The traffic emissions were modelled explicitly, and the remaining road vehicle sources, aircraft taxiing and holding, heating, and other emissions were modelled as 1km² gridded emissions.

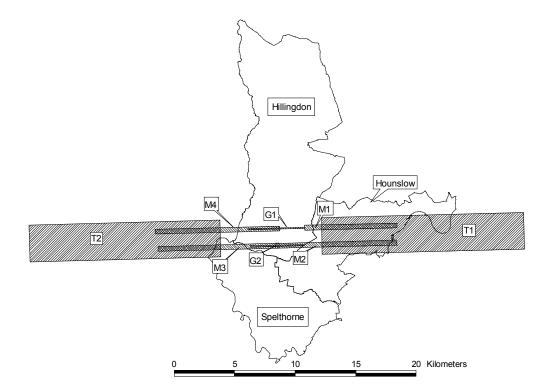


Figure 8.1: Diagram showing the aircraft volume sources in plan

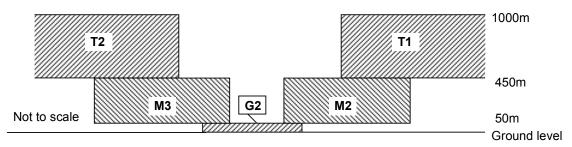


Figure 8.2: Diagram showing the aircraft volume sources in elevation (view from south)

8.1 Emissions

Tables 8.1 and 8.2 show the emissions of NO_x and PM_{10} , respectively, from the different Heathrow Airport source groups. Figures 8.3 and 8.4 show pie charts of the breakdown of emissions within the borough. Note that the road vehicles group includes the "Heathrow traffic" shown earlier, as well as on-site traffic including car parks and taxi ranks.

	Road vehicles	Airborne aircraft	Taxiing & aircraft holding	Heating	Other
Hillingdon	487	2607	533	251	342
Hi/Ho/Sp	663	3861	533	251	342

Table 8.1: NO_x emissions from Heathrow

	Road vehicles	Airborne aircraft	Taxiing & aircraft holding	Heating	Other
Hillingdon	18	11	44	9	6
Hi/Ho/Sp	24	20	44	9	6

Table 8.2: PM₁₀ emissions from Heathrow

The maximum contribution to the emissions of NO_x from Heathrow Airport is from airborne aircraft, which contribute 66%. The maximum contribution to the emissions of PM_{10} is from taxiing and aircraft holding, which contribute 44%.

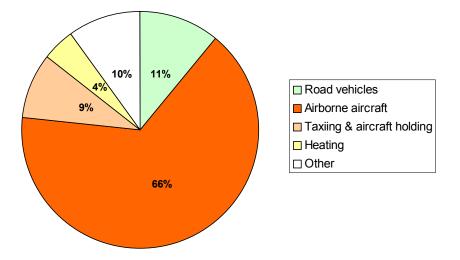


Figure 8.3: NO_x emissions from different Heathrow source groups in Hillingdon

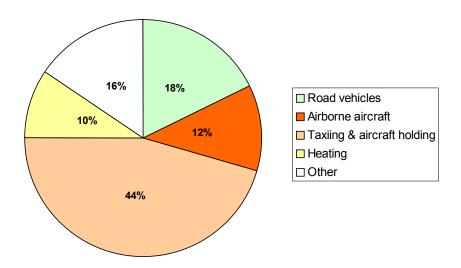


Figure 8.4: PM₁₀ emissions from different Heathrow source groups in Hillingdon

The annual average concentrations of NO_x resulting from emissions from each airport source type have been predicted at the receptor points in the borough. Figure 8.5a shows the contribution of each source type to the total and Figure 8.5b shows these contributions as percentages of the total concentrations resulting from Heathrow emissions. Figures 8.6a and b show the equivalent information for PM_{10} .

The contribution to the annual average concentrations of NO_x and PM_{10} from each airport source type varies depending on the receptor location considered.

At most of the receptor points, the major contribution to annual average NO_x concentrations from the airport is from airborne aircraft. However, road vehicles are the major contributor at the AURN site. For PM_{10} , the percentage contribution varies depending on the receptor location considered.

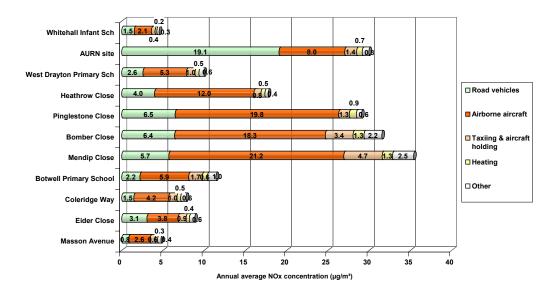


Figure 8.5a: Contribution of Heathrow sources to annual average NO_x concentrations

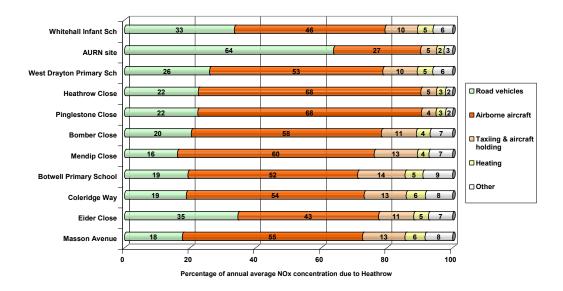


Figure 8.5b: Percentage contribution of Heathrow sources to annual average NO_x concentrations from Heathrow

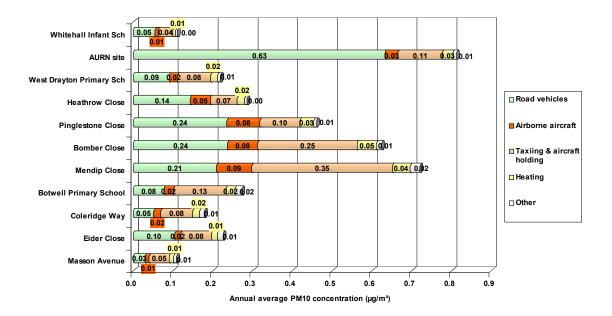


Figure 8.6a: Contribution of Heathrow sources to annual average PM₁₀ concentrations

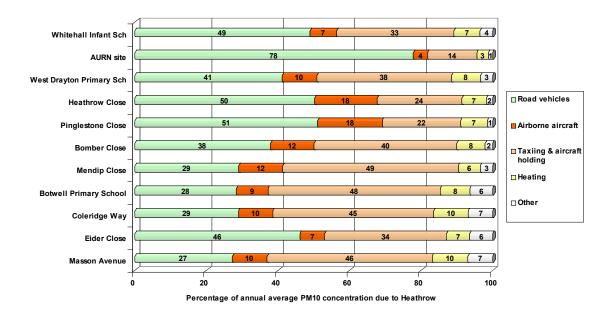


Figure 8.6b: Percentage contribution of Heathrow sources to annual average PM_{10} concentrations from Heathrow

9. Breakdown of Heathrow airborne aircraft sources by height

Detailed information on the emission rates of aircraft in different stages of the Landing and Take-Off (LTO) cycle were given in the Heathrow Emissions Inventory. For the purposes of the modelling this information was used to define a set of volume sources, of different dimensions and with different emission rates, to represent the airborne aircraft emissions.

To determine the relative impacts of the aircraft at different heights, the volume sources used in the modelling have been divided into three sets according to the heights they represent (0 to 50m; 50m to 450m; and 450m to 1000m) and have been modelled separately. No airborne aircraft sources above a height of 1000m have been included in the modelling. The modelled volume sources are shown in plan and elevation in Figures 8.1 and 8.2 respectively.

9.1 Emissions

Table 9.1 shows the dimensions and emission rates of each of the modelled volume sources and Figures 8.1 and 8.2 show the dimensions of the volume sources in plan and elevation.

Source	Base	Тор	Length	Width	NO _x	NO _x	PM ₁₀	PM ₁₀
	height	height	(m)	(m)	emission	emission	emission	emission
	(m)	(m)			rate (T/yr)	rate (g/m ³ /s)	rate (T/yr)	rate (g/m ³ /s)
G1	0	50	4701	100	713	9.62E-07	3.1	4.23E-09
G2	0	50	4456	100	981	1.40E-06	3.6	5.16E-09
M1	50	450	7633	400	117	3.04E-09	2.1	5.40E-11
M2	50	450	9995	400	566	1.12E-08	3.4	6.80E-11
M3	50	450	10261	400	808	1.56E-08	2.4	4.65E-11
M4	50	450	10021	400	800	1.58E-08	3.2	6.33E-11
T1	450	1000	16695	3000	1112	1.28E-09	7.7	8.85E-12
Т2	450	1000	15759	3000	2848	3.47E-09	8.7	1.07E-11
Total					7945		34.3	

 Table 9.1: Explicitly modelled Heathrow Airport volume sources

Table 9.1 shows that more NO_x and PM_{10} are emitted from aircraft above a height of 450m than from those close to ground level. However, the impact of the emissions from different heights on ground level concentrations will vary due to the distance from the ground and the area over which the pollutants are emitted.

To determine the relative impacts of the aircraft at different heights, the volume sources at heights of 0 to 50m; 50m to 450m; and 450m to 1000m have each been modelled separately. The annual average concentrations of NO_x resulting from emissions from each set of sources have been predicted at each of the receptor points in the borough. Figure 9.1a shows the contribution of each set to the total and Figure 9.1b shows these contributions as percentages of the total concentrations resulting from aircraft emissions. Figures 9.2a and b show the equivalent information for PM_{10} .

The contribution of all the airborne aircraft to the annual average concentrations of NO_x and PM_{10} varies greatly depending on the receptor location, although in all cases the greatest contribution comes from the aircraft closest to the ground. These emissions contribute between 82% and 97% of the total NO_x and PM₁₀ concentration resulting from airborne aircraft. The impact of the aircraft above a height of 450m is very low, contributing at most 3% of the total NO_x and PM₁₀ concentrations resulting from aircraft emissions. The greatest percentage contribution from aircraft above a height of 450m occurs at sites away from the airport, where the overall contribution to the ground level concentrations from airborne aircraft is smallest.

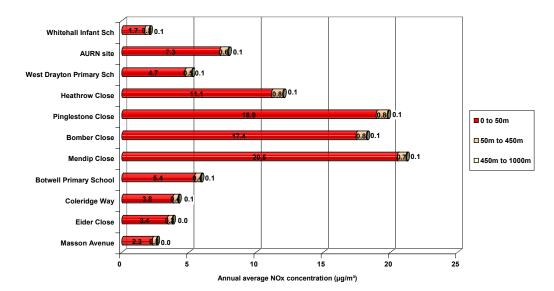


Figure 9.1a: Contribution of aircraft at different heights to annual average NO_x concentrations

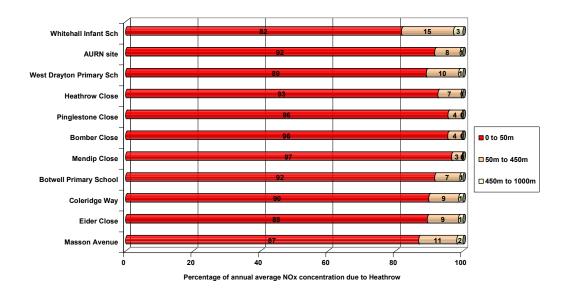


Figure 9.1b: Percentage contribution of aircraft at different heights to annual average NO_x concentrations from airborne aircraft

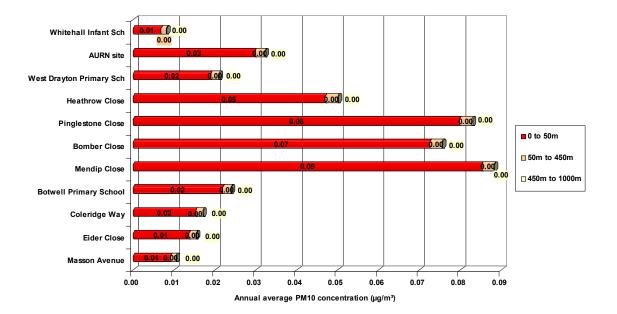


Figure 9.2a: Contribution of aircraft at different heights to annual average PM₁₀ concentrations

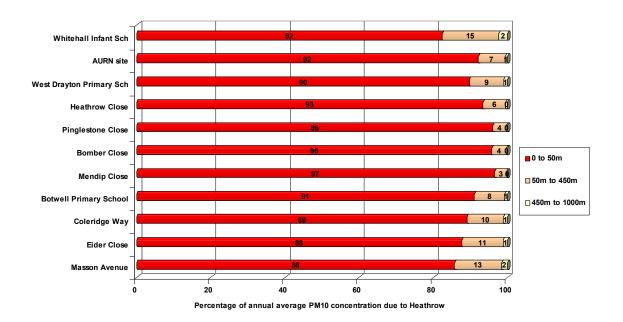


Figure 9.2b: Percentage contribution of aircraft at different heights to annual average PM_{10} concentrations from airborne aircraft.

10. Discussion

The predicted emissions of NO_x , in 2005, and PM_{10} , in 2004, from within Hillingdon and from the rest of the area covered by the emissions inventories, have been broken down in the following ways:

- By major source group;
- Breakdown of traffic sources by vehicle type;
- Breakdown of traffic sources by road type, i.e. which organisation has responsibility;
- Breakdown of traffic sources into Heathrow and non-Heathrow traffic;
- Breakdown of Heathrow Airport sources; and
- Breakdown of Heathrow airborne aircraft sources by height.

The source apportionment exercise has quantified the relative contribution of each source group both (1) to the total emissions, and (2) to the resulting annual average ground level concentration at eleven receptor locations within Hillingdon.

The results for each part of the exercise are described in the following sections.

Breakdown into major source groups

The maximum contribution to the total emissions of NO_x from within Hillingdon is from Heathrow Airport, which contributes 58%. The maximum contribution to the total emissions of PM_{10} is also from Heathrow Airport, which contributes 40%.

At most of the receptor points, the major contribution to annual average NO_x concentrations is from major roads. However, Heathrow Airport is the major contributor at Mendip Close and Bomber Close. For PM_{10} , the background concentration dominates the predicted concentrations.

Breakdown of traffic by vehicle type

The maximum contribution to the total emissions of NO_x from traffic from within Hillingdon is from cars, which contribute 38%. The maximum contribution to the total emissions of PM_{10} from traffic is from LGVs, which contribute 32%.

The contributions to the total annual average concentrations of NO_x and PM_{10} from traffic sources vary greatly depending on the receptor location considered, with the greatest contribution for both pollutants at the AURN site.

The percentage contribution of each traffic type to the annual average NO_x concentration is approximately the same at each of the receptor points with the major contributions being from cars and HGVs. The situation for PM_{10} is similar with cars, HGVs and LGVs all making major contributions to the concentrations.

Breakdown of traffic by road type

The NO_x emissions from major roads within Hillingdon are fairly equally shared out amongst roads for which the Highways Agency and the local authority have responsibility, with the TfL roads contributing slightly less. There is a similar situation for PM_{10} .

The contribution to the annual average concentrations of NO_x and PM_{10} from each road group varies depending on the receptor location considered, as does the percentage contribution from each group.

Breakdown into Heathrow and non-Heathrow traffic

Emissions from Heathrow traffic make up 16% of the total emissions of NO_x from major roads within Hillingdon. Non-Heathrow traffic contributes 60% with the remainder undefined. Heathrow traffic contributes 15% of the total emissions of PM_{10} from major roads within Hillingdon. Non-Heathrow traffic contributes 58% with the remainder undefined

The contribution to the annual average concentrations of NO_x and PM_{10} from each road group varies depending on the receptor location considered, as does the percentage contribution from each group. For both pollutants the percentage contribution due to Heathrow traffic is greatest at Bomber Close where it reaches 26% of the total concentration resulting from traffic emissions.

Breakdown of Heathrow Airport sources

The maximum contribution to the emissions of NO_x from Heathrow Airport is from airborne aircraft, which contribute 66%. The maximum contribution to the emissions of PM_{10} is from taxiing and aircraft holding, which contribute 44%.

The contribution to the annual average concentrations of NO_x and PM_{10} from each airport source type varies depending on the receptor location considered.

At most of the receptor points, the major contribution to annual average NO_x concentrations resulting from the airport emissions is from airborne aircraft. However, road vehicles are the major contributor at the AURN site. For PM_{10} , the percentage contribution varies depending on the receptor location considered with the major contributors being road vehicles and taxiing and aircraft holding.

Breakdown of Heathrow airborne aircraft sources by height

To determine the relative impacts of the aircraft at different heights, the volume sources used in the modelling have been divided into three sets according to the heights they represent (0 to 50m; 50m to 450m; and 450m to 1000m) and have been modelled separately. The maximum emissions of NO_x and PM_{10} are emitted from aircraft above a height of 450m, however, the impact of the emissions from different heights on ground level concentrations will vary depending on the distance from the ground and the area over which the pollutants are emitted.

The contribution of all the airborne aircraft to the annual average concentrations of NO_x and PM_{10} varies greatly depending on the receptor location.

In all cases the greatest contribution to the ground level concentrations comes from the aircraft closest to the ground, up to a height of 50m, which contribute between 82% and 97% of the total NO_x and PM_{10} concentration resulting from airborne aircraft. The impact of the aircraft above a height of 450m is very low, contributing at most 3% of the total NO_x and PM_{10} concentration resulting from airborne aircraft emissions. The greatest percentage contribution from aircraft above a height of 450m occurs at sites away from the airport, where the overall contribution to the ground level concentrations from airborne aircraft is smallest.

